
Social Programming Considered as a Habitat for Groups
Joe Edelman

Human Systems Curriculum
Berlin, Germany

joe.edelman@gmail.com

ABSTRACT
A newway to code up social apps and information systems emerges
from studying how people use ordinary speech to set up social roles
and obligations. Sentences like “whoever hosts the potluck has to
contact the guests” and “once two people swipe right on each other,
they can exchange messages” are made machine interpretable with
a little extra punctuation. This approach–combined with a shared
database of these social rules–leads to social software that works
more like social conventions: it can be defied, expressively rein-
terpreted, and remodeled by the user. It also leads to much more
flexible style of coordination, with greater support for individual
leadership, individual discretion, and more open-ended collabora-
tions. This can address a number of modern social ills.

CCS CONCEPTS
• Software and its engineering→ Specialized application lan-
guages; Application specific development environments; •
Information systems→ Collaborative and social computing sys-
tems and tools; •Human-centered computing→ Interactive sys-
tems and tools; Collaborative and social computing systems and tools;

KEYWORDS
Programming experience; Social programming
ACM Reference Format:
Joe Edelman. 2018. Social Programming Considered as a Habitat for Groups.
In Proceedings of Programming Experience Workshop (PX/18). ACM, New
York, NY, USA, 8 pages. https://doi.org/10.475/....

1 INTRODUCTION
Software is eating the world. [1]

Here’s another way of saying that: Software is coming between
people and deciding how they talk and work. It’s mediating inter-
actions, in organizations of all sizes, from farms to multinational
companies to friend groups.

It’s useful to break this into two related phenomena:
1. Software eats older forms of bureaucracy–replacing form-

based paperwork, checklists and other ways of tracking
work–usually in multilayered organizations.

2. Software creates newbureaucracy as software-basedmes-
saging spreads into informal, lightweight organizations like
friend groups and book clubs.

Most technologists think this is a good thing, and there are
certainly advantages. But let’s consider the downsides of each:

PX/18, XXXXXXXXX, 2018, Nice, France
© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
Programming Experience Workshop (PX/18), https://doi.org/10.475/.....

1.1 Software Alters Old Bureaucracy
In businesses, universities, government organizations, and so on,
information flow and work coordination have been automated via
software.

Compared to the previous technologies used–paper forms, stamps,
signatures, private conversations, group meetings, checklists, writ-
ten correspondence–the new systems suffer from rigid expec-
tations. It’s difficult for participants to do something different
than what the software assumes, or to post data that doesn’t fit its
schemas.

Authority becomes impersonal and mechanistic, as people
report to the script or to dashboards, rather than to one another.
They then feel less responsible for broader goals and for each other.

The organizations become over-mediated, as everything needs
to be done and tracked through screen-based interfaces. Simple
social actions can’t happen naturally through conversation, because
these in-person dialogues won’t advance the script correctly or
leave the online data in the right state.

Finally processes become esoteric and users with better ideas
often can’t change the way the automation works, or suggest alter-
natives.

1.2 Software Creates New Bureaucracy
Information software and coordination also find their way into
previously informal processes. Friend groups use group messaging,
calendaring software, and systems like facebook groups and events
to coordinate birthday parties, trips, and the like.

This usually means a shift towards asynchronous modes of col-
laboration, and thus a tendency towards notification overload or
endless checking to keep things moving along.

To the extend that these systems advance via text utterances or
posts, it’s hard to get an overview of where things stand–both
in terms of project status and in the relationship between people.
There are covert, unintentional power dynamics.

Relatedly, interactions in these systems tend to be limited to
short term utterances rather than long-term visions or plans.
There’s no clarity about ongoing roles.

Finally group processes run on generic friend-coordination ser-
vices are always starting from scratch. There’s nowhere to en-
code wisdom about process.

2 APPROACH
Taken together, these problems with software bureaucracy are sig-
nificant. We are all familiar with them. They may even be responsi-
ble for an economic slowdown.[3]

Where did we go wrong with information systems and social
software?

https://doi.org/10.475/....
https://doi.org/10.475/....

PX/18, XXXXXXXXX, 2018, Nice, France Joe Edelman

We can find clues in how humans use ordinary language.1 We
set up social coordination in human discourse all the time. We use
language to make plans, to describe games or policies, to commit
to things, to ask for reports on processes, etc.

Figure 1: Coordination in speech

It’s surprising how powerful a "programming" language this is,
and how flexible. We can build up a social coordination process like
Tinder out of the same directives:

1This all probably owes something to McCarthy’s Elephant 2000 [8] and the speech
acts literature. But my understanding of what language does is much closer to Charles
Taylor’s in The Language Animal (2016) [9]. In particular, Taylor describes how we
set up and tear down "footings" with regard to one another–kinds of local roles,
expectations, modes of discourse, and responsibilities. This is more or less what I’m
trying to enable in software.

Figure 2: Setting up Tinder in speech

Much can be learned from how humans use speech this way.
There is great wisdom in it, encoded into the structures of language
and social convention.

In the next two sections, we will see what it’s like to build a
social programming environment for groups around this way of
talking. In section 4, I’ll identify challenges with this approach,
and in section 5, I’ll conclude with the advantages. I’ll return to
the social ills mentioned in the introduction and see whether this
model for social programming can address them.

3 A HABITAT
Object-oriented and functional programming tend start with what
the machine understands and abstract towards more human con-
cepts.

In this paper, we’ll go in reverse. We’ll start with what humans
use to set up coordination and find ways to bring the machines on
board.

We will make it easy for a machine to recognize and support
the discretionary coordination of a group. This leads to a very
different way to build social apps–indeed instead of building them
as programmers, the users can take the lead and use their own
discretion, casually setting up and tearing down roles, expectations,
and conditions as they saw fit.

We could do this using natural language processing, and perhaps
that’d be best. But for simplicity’s sake, let’s start with emoji to
help the machine along in understanding our intentions.

3.1 An Example
Imagine that we are both in a chatroom, and I send a message like
this:

Welcome to Tinder Lite.
Send a photo , a bio , and your

Social Programming Considered as a Habitat for Groups PX/18, XXXXXXXXX, 2018, Nice, France

location to get started.
(photo bio loc like)

It could be interpreted to mean that I expect you to reply in a
certain format. So it would appear to you like this:

Figure 3: Message with Reply Button

And this notation could help you compose and send the reply, it
might look like this:

Figure 4: Assisted Composition

Figure 5: Structured Posting

(Note that the notation like, used in the draft, has become a
checkbox in the posted message.)

It’d be helpful if–besides viewing all this as a chatroom–we could
also see what has happened in terms of a hierarchical database:

/userID1/posted/introMessageID /...
/userID2/posted/bioMessageID /...
/userID2/data/bio /...
/userID2/data/photo /...
/userID2/data/loc /...
/userID1/clicked/like/bioMessageID

Figure 6: Habitat can be viewed as a thread of chat mes-
sages/actions or as a browsable real-time database.

If I like I can post a live list of who’s matched with who so far,
using an embedded query on this database:

Here are all the matches so far
{

PX/18, XXXXXXXXX, 2018, Nice, France Joe Edelman

$a/posted/$x
$b/clicked/like/$x
$b/posted/$y
$a/clicked/like/$y

}

Figure 7: A Live Query

Or send a private message to the people who’ve matched, with
their images attached.

{
$a/posted/$x
$b/clicked/like/$x
$b/posted/$y
$a/clicked/like/$y

}
Hi $a , meet $b. You 've matched!

{$a/data/photo} {$b/data/photo}

Or even–as in the actual Tinder app–invite matches into a private
chatroom just for them.

{
$a/posted/$x
$b/clicked/like/$x
$b/posted/$y
$a/clicked/like/$y

}

Hey (match $a $b).
You 've matched!

Putting all this together, we have a very short script for our tinder
clone, which can be pasted into any chatroom to add tinder-like
functionality:

Welcome to Tinder Lite.
Send a photo , a bio , and
your location to get started.
(photo bio loc like)

{
$a/posted/$x
$b/clicked/like/$x
$b/posted/$y
$a/clicked/like/$y

}

Hey (match $a $b).
You 've matched!

4 THE CORE LANGUAGE AND
ENVIRONMENT

I’ve built a prototype that parses such messages as emergent social
software. Once one person posts such a script, the chatroom can
continue to evolve as other rules are presented and adopted bymem-
bers. I call this prototype, and the rich text format it implements,
“Habitat”.

This may look simple, but I believe these abstractions allow for
the collaborative construction of a wide variety of social software,
in such a way that non-programmers will be able to understand,
alter, accept, or reject the social rules provided.

I’ll step you through the main features:
• Roles, mentions, and hashtags (@, #)
• Discreet Messages ()
• Structured Messages (,)
• Embedded queries ({})
• Reply templates ()
• Doors ()
• Dynamic Messages
• Dynamic Doors

And then discuss extensions to support custom UI.

4.1 Roles, mentions, and hashtags
In Habitat, people have user names but also roles. The person who
creates a chatroom becomes the chatroom’s @organizer. Everyone
who joins it is a #member.

The at sign (@) is used for roles held by one person at a time,
where the hash (#) is used for multi-person roles. You can also use
the at sign with a username, as on twitter or facebook.

This punctuation is used to scope notifications to the right group.

Hey can anyone who 's #attending
pick me up on the way to the party?

@organizer , I'm going to be late

Social Programming Considered as a Habitat for Groups PX/18, XXXXXXXXX, 2018, Nice, France

Roles in the top-level chatroom may be created and joined by
posting a message with a checkbox for them:

Who 's coming to the potluck?
#potluck

Sara , do you want take over from me?
@teamLeader

4.2 Discreet Messages
Messages posted discreetly are only visible to the people who are
explicitly mentioned in the message. This is signaled by prepending
a lock emoji () to a message:

Sara , do you want take over from me?
@teamLeader

4.3 Structured Messages
Paperclips allow us to attach structured data along with a message
being composed.

@organizer , here 's my photo and bio

Data may also be collected using checkboxes attached to mes-
sages.

Who 's #attending?
And who can bring pasta salad or wine?

Oh and we need 4 #horsemen

When a discreet message has attachments, the data that’s col-
lected and posted is scoped so as to be visible only to the message
sender and recipients.

@organizer , I have a crush on Anne ,
can you seat me with her and pass
her this creepy note?

4.4 Embedded Queries
Curly braces allow us to post messages which contain live queries
into such structured data:

Check out the list of people {# attending}
and everyone 's photos
{# attending/data/photo}

Of course, such queries display only the data that’s visible to
each user. To further narrow their scope, a discreet query shows
only rows that involve the user somehow. So this query would only
show the users’ own matches:

Here are your matches
{

$a/posted/$x
$b/clicked/like/$x
$b/posted/$y
$a/clicked/like/$y

}

Live queries may also be used as part of an attachment, to have
the user pick from structured data2 that’s already in the database:

Here 's my favoritePhoto {*/ data/photo}.

(Or equivalently)

Here 's my favoritePhoto{photo}.

4.5 Reply Templates
In traditional social software, it’s the “app” that asks you, imperson-
ally, to submit structured data. “Tinder” asks you for your profile,
“facebook” asks you for data about an event you want to host, etc. In
Habitat, these requests come from real people–often the chatroom
organizer–who have set up rules that respond to your submitted
data.

So the organizer might ask:

Which book should we pick for the
book club this month?
(bookChoice{bookOption})

Or anyone might say:

Hey @members , I'm going to have a movie night ,
what should we watch?
(How about suggestion{movie}?)

And thus collect structured responses.

4.6 Doors
Besides discreet messaging, there is another way to have chats
between small groups. If you’d like to chat in a small group with a
few other members of a chatroom, you can send them a door ()

Hey @julie @eric , let 's plan here theproject

Doors have names. In this case you’ve been given a door to
“theproject”. Door names can also be in parentheses, and can contain
structured data.

Let 's plan the next book club event!
(bookclub date)

Finally, when you make a door, you can assign roles that are
only be active inside the door.

Let 's plan the next book club event!
(bookclub date; @host: @julie)

2In this there are similarities with Chorus [2][6]. From Chorus, I’ve taken the sensible
emphasis on typed data, but set it within a human, time-sensitive message-passing
paradigm rather than a timeless data-definition paradigm.

PX/18, XXXXXXXXX, 2018, Nice, France Joe Edelman

4.7 Dynamic Messages
If a message starts with a query in curly braces, it works a little
differently. Rather than making a live query post, the query is used
to generate dynamic messages.
{

$a/posted/$x
$b/clicked/like/$x
$b/posted/$y
$a/clicked/like/$y

}
Hi $a , meet $b. You 've matched!

{$a/data/photo} {$b/data/photo}

Every time there is a new match for the query, a new message
will be posted.

This can also be used to generate reminders. I could remind
myself to choose a book for our club a few weeks before we meet:
{

$user/data/bookclubDate/$x
/time/now/($x - 21 days)

}
@self (
Great , lets all read book{bookIdea}
for our meeting on $x.
Who 's #attending?

)

4.8 Dynamic Doors
Dynamic messages can be combined with doors to make subgroups
automatically, or subgroups that exist only for a certain time or
place, or under certain conditions.
{

$a/posted/$x
$b/clicked/like/$x
$b/posted/$y
$a/clicked/like/$y

}

Hey , you 've matched! (match $a $b).

This mechanism is very flexible. In restaurant management soft-
ware, waiters might be assigned to tables. In project management
software, employees might be associated with projects.
We need someone to project:cleanUpTheLoft

{
$user/clicked/project:$x

}

$user , thanks for helping with (project $x).

Or to create subgroups where everyone can discuss their favorite
band.
What was your favorite band as a teenager?
(favoriteBand)

{ $user/data/favoriteBand/$x }
$user $x

5 EXTENSIONS
The above language is simple. There’s no keywords, and not much
new punctuation (#, @, {}, , , , ,). I believe these compo-
nents can be used to model a wide variety of social flows, including
those from mainstream and business apps.

It seems reasonable to imagine that, by starting with chat and
moving through structured data, to queries, to dynamic messaging
and doors, many people will find an easy path towards social pro-
gramming. Indeed, this would recapitulate the way many learned
to code in the 1980s and 90s, using MUDs, MUSEs, MOOs, or IRC
bots.[10]

The environment can be extended to bring its capabilities closer
to those of current social apps. I’ll cover two such extensions: cus-
tom UI and alternate media.

5.1 Custom UI
In the prototypes above, there are two views of the chatroom avail-
able: one of them looks like a chatroom, the other like a hierarchical
database.

For tinder prototype, we might like to view the chatroom as a
stack of profile cards, either in a random order, or ordered by some
algorithm that reacts to the users’ previous likes.

We could do this with a kind of plug-in–a presenter–which
maps from the hierarchical database onto a custom view. Users
could then choose to view what’s happening as a chatroom, a
database, or using a plugin.

Such plugins could be made inspectable and safe; instead of
having them operate directly on the database, they could implement
declarative UIs atop queries that the user is allowed to inspect.
Instead of making changes to the database, they could be limited to
composing drafts that the user could inspect before posting.

5.2 Alternate Media
Since everything that happens in Habitat is made of messaging, the
above approach to custom UI might also be extended to conversa-
tional and audio-based interfaces, like Alexa or Siri, without too
much work.

There can be spoken-word or audio presenters as well as screen-
based presenters, and the same newly-arriving message data can
be presented in different ways depending on the users’ state and
preferences.

6 CHALLENGES
Habitat exists as a proof-of-concept.[5] There are some challenges
to giving it a real life.

1. Data migration. As the social script in a chatroom evolves,
the database will tend to grow obsolete. Is there an approach
to data migration which can work in this environment and
which is social rather than authoritative?

Social Programming Considered as a Habitat for Groups PX/18, XXXXXXXXX, 2018, Nice, France

2. Divergence Could users really cooperate on a set of direc-
tives? Would they tend to conflict? If users are allowed to
endorse different sets of directives, how would changes end
up converging?

3. Scalability. Even the simple pattern-matching-based query
language used here is difficult to make efficient. And how
can it be extended to support aggregations and the like?

4. Ease ofUse.How can use of the directives and sub-languages
bemade easier with UX, such as the popups that appearwhen
you type @ on facebook, or the autocomplete components
of some IDEs?

5. Extension. Can presenter plugins be made secure, sharable,
and the like?

7 ADVANTAGES
In the introduction I pointed out some problems with existing
social software: there are rigid expectations, impersonal sources of
authority, and it’s usually impossible to see an an overview of state
or of the relationships between people, to evolve wisdom about
process, or to step outside the software mediation.

Why do these problems arise with conventional software? Per-
haps it’s because traditionally, programmers imagine interacting
with users as if they were similar to other software components.
People aren’t objects with APIs, but if we were, then we wouldn’t
be bothered by rigid expectations, impersonal authority, lack of an
overview, and so on.

Perhaps software designers have defaulted to treating people
like objects with APIs, and treating group processes (or “business
logic”) like code.

But people need to defy expectations, they need discretion over
their own jobs, timing, communication, and visibility, they need
an overview (because sometimes they need to take the lead), and
people-based processes are always subject to revision and elision.

It’s worth going through these differences in detail, and seeing
how Habitat addresses them.

1. Humans need to understand what they’re part of, and
software components don’t. In Habitat, there’s a global, in-
spectable, directly-editable state. Users can always un-
derstand why they matched with someone, what they signed
up for, and so on, using the database view. The entire social
flow and structure of the app is made legible, easy to under-
stand, and editable by users. This includes the specification
for which information is collected, from which users, who
gets shown what, who gets notified, what all the roles and
expectations are, and the timing for all of the above.

2. Humans need to explore to understand. In Habitat, users
can explore the social consequences of different roles and
actions by trying them out. They can accept roles and shed
them later, and the environment will figure out how to re-
cover. They can unsend messages. If they like, they can
uncheck boxes they previously checked, delete media, etc.
Everyone’s live queries and pattern matches will update to
reflect these changes.

3. Humans need the discretion to alter plans. Habitat is
suggestion based. Instead of specifying exactly what users
can do at any time, dynamic messages and doors implement

a kind of soft automation. Everything scripted defers to the
humans that are actually working together on a related prob-
lem. The user is always free to submit some other data, send
it to some other person, and even to write their own queries,
doors, and checkboxes to change roles and rules completely.

4. Humans don’t emit technical procedures, rather they ex-
press aims using composable media. By embedding rep-
resentations for data collection, querying, and pattern match-
ing, and setting expectations into ordinary human discourse,
users have the sense that they are involved in a discussion
using a shared medium of expression, rather than instruct-
ing a computer what to do. We can refer to this medium as
data-bound, media-independent rich text.

5. Humans aremotivated bynuanced, adaptable allegiances
to one another (not to work itself). So, in Habitat, people are
accountable to one another, not to the script. The script is
never the source of messages and instructions itself. The
script and its author are not an authority, but lend authority
to the players insofar as the players accept the roles in the
script.

6. Humans contribute to the social processes they find
themselves in. In Habitat, a user can investigate the dy-
namic queries behind whatever she sees, see who wrote
them, and write alternatives herself which run in parallel in
the same group of users and suggest other ways of coordi-
nating.3 If I send you a door, you can enter and immediately
start writing your own rules, changing which information
is collected, from which users, who gets shown what, who
gets notified, and what all the roles and expectations are.

7. Finally, humans have bodies and operate across many
channels and media. Habitat doesn’t assume everything
will be done through it’s screen-based interfaces. The same
script lines can automate interactions across several mediums:
text chat, video chat, VR, and most importantly just crossing
the room to talk with your colleagues. Even if apps have
custom UX designed only for screens, other interfaces can
update the same data.

For all of these reasons, I believe traditional approaches to coding
social software and information systems are inhumane. Computer
programs must no longer hardcode people’s social interactions or
roles. Instead, they should provide a medium-independent way
for users to do whatever they want with other people, and limit
themselves to making suggestions for how the user could proceed;
suggestions that the user can modify. Systems like Habitat show
one way to do so.4

ACKNOWLEDGMENTS
CEML was made possible by the investors in my failed startup,
Groundcrew, and my work here was partly funded by a grant from
Stripe.
3This environment descends from a previous project of mine, CEML[4]–which in turn
descends from workflow programming languages like FlowMark, Lotus Notes, and so
on. CEML was used by non-programmers, and this was encouraging. But with CEML
I also saw how easy it is for people to design their processes as funnels rather than
playgrounds, and how hard it is to work around that in a programming environment.
Many of the design choices here are to prevent this tendency.
4Another approach is to leave the negotiation of social roles out-of-band, in the real
world. This can work for in-person teams. See Dynamicland[7]

PX/18, XXXXXXXXX, 2018, Nice, France Joe Edelman

I am grateful to Joshua Schacter, Rob Ochshorn, and Bret Victor
for conversations about social coordination and non-screen-based
programming environments. And to the program committee and
organizers of the PX! workshop for their comments and feedback.

REFERENCES
[1] Marc Andreessen. 2011. Software is Eating the World. (2011). http://www.wsj.

com/articles/SB10001424053111903480904576512250915629460
[2] Jodie Lian Chen. 2017. Chorus: End User Programming of Social Applications.

Master’s thesis. MIT. http://www.chorus-home.org/jodie_thesis.pdf
[3] Patrick Collison. 2017. Tweet. (2017). https://twitter.com/patrickc/status/

705039375852130304
[4] Joe Edelman. 2011. CEML Github Repo. (2011). https://github.com/jxe/ceml
[5] Joe Edelman. 2018. Habitat Github Repo. (2018). https://github.com/jxe/habitat
[6] Jonathan Edwards, Jodi Chen, and Alessandro Warth. 2016. Live end-user

programming: a demo/manifesto. In Proceedings of LIVE 2016. http://www.
chorus-home.org/LIVE16.pdf

[7] Bret Victor et al. 2018. Dynamicland. (2018). https://dynamicland.org/
[8] John McCarthy. 1989. Elephant 2000: A Programming Language Based on Speech

Acts. Technical Report.
[9] Charles Taylor. 2016. The Language Animal: The Full Shape of the Human

Linguistic Capacity. Belknap Press: An Imprint of Harvard University Press.
https://www.amazon.com/Language-Animal-Shape-Linguistic-Capacity/dp/
067466020X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&
linkCode=xm2&camp=2025&creative=165953&creativeASIN=067466020X

[10] Wikipedia. 2018. MOOs. (2018). https://en.wikipedia.org/wiki/MOO

http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.chorus-home.org/jodie_thesis.pdf
https://twitter.com/patrickc/status/705039375852130304
https://twitter.com/patrickc/status/705039375852130304
https://github.com/jxe/ceml
https://github.com/jxe/habitat
http://www.chorus-home.org/LIVE16.pdf
http://www.chorus-home.org/LIVE16.pdf
https://dynamicland.org/
https://www.amazon.com/Language-Animal-Shape-Linguistic-Capacity/dp/067466020X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=067466020X
https://www.amazon.com/Language-Animal-Shape-Linguistic-Capacity/dp/067466020X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=067466020X
https://www.amazon.com/Language-Animal-Shape-Linguistic-Capacity/dp/067466020X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=067466020X
https://en.wikipedia.org/wiki/MOO

	Abstract
	1 Introduction
	1.1 Software Alters Old Bureaucracy
	1.2 Software Creates New Bureaucracy

	2 Approach
	3 A Habitat
	3.1 An Example

	4 The Core Language and Environment
	4.1 Roles, mentions, and hashtags
	4.2 Discreet Messages
	4.3 Structured Messages
	4.4 Embedded Queries
	4.5 Reply Templates
	4.6 Doors
	4.7 Dynamic Messages
	4.8 Dynamic Doors

	5 Extensions
	5.1 Custom UI
	5.2 Alternate Media

	6 Challenges
	7 Advantages
	Acknowledgments
	References

